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Analysis of Waveguide Post Configurations:
Part l–-Gap Immittance Matrices

J. S. JOSHI AND J. A. F. CORNICK

Abstract—The reaction concept in electromagneties is used to analyze

two useful kinds of post-mounting structure in rectangular waveguide.
The Mt is the general multiple-post arrangement with a gap in each post,
the second being a single post with multiple gaps. The analysis derives
equations for calculating the elements of the gap immittance matrices for

these two structures.

INTRODUCTION

RECTANGULAR waveguide post-mounting structures

have wide practical applications and are commonly

used in transferred-electron device andl IMPATT oscillators,

often with an associated varactor tuning diode. In such

arrangements it is usual to post mount the device in the

guide, providing power or biasing via a suitable choke to

each post. Many other uses can be visualized such as

multiple source excitation, p-i-n’ diode attenuators, and

passive filter elements,

As a consequence of the practical applications of such

structures, a number of characterizations have been pre-

sented. Those considered so far have contained some limita-

tions on the generality of the structure or in the clescription

of the equivalent network. In-line configurations, where

two posts are sited along the central z axis of the guide,

have been analyzed by some authors [1], [2] to explain the

performance of Gunn oscillators. Templin and Gunshor [1]

used a modified Eisenhart and Khan [3] analysis for a

single-post structure, while Dean and Howes [2] used

Marcuvitz [4] results for the reactance of a post with the

gap located at the extremity. The post reactance were

calculated in isolation and were coupled by the dominant

TEIO mode using the waveguide length impedance trans-

lation. Such techniques do not include the effect of evanes-

cent mode coupling between the two posts. This omission

may be justified when the posts are widely sepnrated, but

since small separations may be very desirable in practice,

the method will be least useful in just these cases.

The other special arrangement which has been considered

is the coplanar post structure in which two posts {are located

in one plane normal to the direction of propagation. Even

in this case the structure considered has been of a sym-

metrical nature with respect to both the post and gap

positions [5]. Chang and Khan [6] analyzed the case of

coplanar location of two unequal flat strips, The usefulness
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of the analysis is restricted as finite gaps in the strips are

not considered.

It is thus seen that all analyses to date have suffered from

a loss of generality in the structure. Here an attempt is made

to characterize the completely general multipost mounting

arrangement in the form of a gap impedance matrix for

this structure.

The alternative mounting arrangement, although not as

practical, in which both devices are mounted in a single post

has previously [7] been considered for the case of sym-

metrically placed gaps, while Eisenhart [8] has given an

analysis and equivalent circuit of the two-gap single-post

waveguide mount. This alternative arrangement is also

considered here with the generality of multiple gaps in the

post and in this case a gap admittance matrix derived.

Fig. 1 shows the location and parameters of a general

post i. In the multipost case the post and gap variables are

Si, di, gi, IZi, and Lt. In the single-post multigap case the

variables are gi and h ~sinces, d, L will be fixed for the single

post.

THE REACTION CONCEPT

The reciprocity theorem in electromagnetic systems under

certain well-defined conditions equates the response at one

source due to a second source to the response at the second

source due to the first. Considering two sources (Ja,iW.)

and (J#lb) in a linear and isotropic medium enclosed in a

volume V, the general statement of reciprocity becomes

(1)

The volume integrals appearing on both sides of (1) have

been given the name reaction [9] and are measures of the

coupling between the two sources. Thus the reaction of

field a on source b is given by the scalar

(a,b) =
UJ

(E. oJb – H. oM,) dV. (2)

The reciprocity relationship can then be written

(a,b) = (b,a).

The self-reaction (a,a) is the reaction of field a on source a.

Applications to Circuits

Ideal sources in circuit theory are independent of the

load, and their circuit reactions can be written [10] as

(May 1976).
.-
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Fig. 1. Post i location and parameters in rectangular infinite guide.

Thus for the unit current source Ib = 1, (a,b) is a measure For the case of two antennas

of Vab, the voltage at b due to source a. Similarly, for unit

voltage source V~ = 1, (a,b) is a measure of l=b which is

the current at b due to source a.

The equations for a linear N-port in terms of open-circuit

impedances Zij are

where V,Z are the excitations at the ports and the N-port is

compl@ely characterized by the impedance matrix [Zij].

The self-impedance term Zii for port i is the ratio of the

voltage and current at port i with all other ports open

circuited. The mutual impedance term Zij (i # j) is the

ratio of the voltage at port i to current at port j with all

ports (#j) open circuited.

The general impedance element for the current source

excitation is
z,=~j

il
Ij

where Vij is the open-circuit voltage at port i and Ij is the

current at port j with all ports (#j) open. Using (3),

Zij = –Q.2
IiZj

(4)

The reciprocity theorem implies that Zij = Zji. The ele-

ments of the impedance matrix [Zij] are thus the various

reactions between the (i,j) pairs of current sources at the
network ports.

Applications to Antennas

For a perfectly conducting antenna excited by a current

source 1., the current distribution in the antenna is such that

the tangential component of the total electric field vanishes

on the surface of the antenna. If a trial current density

distribution J=’ is assumed in the antenna, the input im-

pedance will be given by (2) and (4) [10]

Zin=zaa=–y=–+ JEa “ Jai dS. (5)
a a s

a,b with currents 10 and Ib,

respectively, the mutual impedance is given by (2) and (4)

where Ea is the field at b due to current density Jat in

antenna a and Jbt is the trial current density in antenna b.

It can be shown that the impedances are stationary with

respect tc) variations in the trial current density distribu-

tions [9], [10].

MULTIPOST STRUCTURE IN RECTANGULAR WAVEGUIDE

Following Eisenhart and Khan [3] the post i is replaced

by an equivalent strip of width 1.8 times the diameter.

Again the assumptions of uniform current density distribu-

tion across the strip and uniform electric field distribution

in the gap are made [3].
The nc~tation in the text is identical to that used by

Eisenhart and Khan [3]. Their method is used to evaluate

the terminal current of the antenna (gap port). The reaction

concept is then used to derive the general expression for

the impedance matrix elements.

The D.yadic Green’s Function: Since the posts are y

directed, it is only necessary to consider y-directed current

distributions, and the form of this function for an infinite

rectangular waveguide becomes

G(r/r”) = yy ~ ~
“=0 *=1

.(2 – d.)(k’ – k?) exp (–rmnlz – 2’1)
abk’rmn

. sin kXx cos kYy sin kXx’ cos kYy’

rmn = (kX2 + kY2 – k2)1i2

& = 1, forn=O

= o, for n # O.
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Trial Current Density Distribution: The problem of

choosing a suitable trial current density can be made

simpler by writing the current density in the form of a

general orthogonal set of circular functions corresponding

to Green’s function; thus for post i,

J:(r) = y.loiui(x)zq(y)a(z – Li)

where

,=1 ( a )k“cosf;+‘-in%)Ui(x) = f =

1=0(b ) @ilycOs%’+Bilysin?)
Ui( y) = f =1

The trial current density distribution selection now reduces

to finding values of the normalized expansion coefficients.

The y-distribution coefficients can be left in general form,

but if the posts are replaced by equivalent fla~t strips of

widths ~i = 1.8di, then the assumption of uniform current

density across the strip width gives specific values to

coefficients A if’ and Bif’ as

B x = wi ~i~ f~si sin Oif -if
a 6.Jr

where

This assumption places an upper limit on the ratio of post

diameter to waveguide broad dimension consistent with

acceptabl~ errors. It is not likely to be a problem in practical

cases due to the conveniently available sizes c}f packages

for semiconductor devices. It is expected that for strip

widths wi < a/4 the assumption is justified.

Electric Field Distribution: The electric field is given by

E(r) = –jo)p
J

~(r/r’) . J(r’) dV’
v

which results in

. Ai”YBi~x sin kXx cos kYy exp (– r,.fllz – Lil).

Gap Electric Field: The assumption is mizde that a

constant spatial electric field exists in each gap. In most

practical cases the gap sizes in relation to the waveguide

height are small, and this will not IIead to excessive error.

For gap size gi < b/4, itis expected that the assumption

will be justified. Defining

Egi = –y E Vi(~) Vi(X)6(Z – Li)
9i

where

vi(x) = 1, forsi–~<xz; si+~; z=Li

The y distribution is

()–d
Vi(y) = ~ 2* SipCOS‘~ d

P=o

The normalized expansion coefficients SiP are given by

p~hi sin $i~
Sip = gi COS — —

b +ip

where

The input currents at the antenna terminals can be ob-

tained by calculating the incident power on each of the gaps,

respectively, for each n. For gap i at z = Li,

J ()2–8 nmiisin ~i” ~,
E~i(r) . .li(r) dS = – ViJoiA i~~ —“ cos — —

s
b b ~i. $

or

()

~= 2–8n ?Z?’Chisin ~i~
Ai~y..loiwi cos ~ ~ .in

b in

The Impedance Matrix Elements: Having determined the

currents at the antenna terminals (gap ports), the self-

impedance of gap port i can be calculated for each n using

(5). Thus

H
b

Zji”= –~ “ Ei(r) “ Ji’(r) dx dy,
li”z ~’=~ ~=~

atz=l,i

b (kz – kY2)
=jV -

~ (kipm/kig.)2

a k(2 — dn) m=l rmn

where

k.
sin %.

tpm = sin kXsi ~m
13im

kj,v = COS k,hi ? .
m

The mutual impedance term for each n is given by [see (6)]

H
b

Zji”=– L a Ei(r) . .l~(r) dX dy,
Ii”Ijn

atz=Lj
~=o ~=1)

b (kz – kY2) ~
=jV -

ki,mkj,~ exp ( – rmn~ij)

a k(2 – 6.) ~.lq .nr

where Lij is the distance between the i,j post planes mea-

sured along the z axis. Writing the expression for Zij at
z = Li confirms that Zijn = Zjin. The general expression

for the elements of the N-port impedance matrix for the

nth spatial harmonic can be written as

()kiP~kjP~
Zij” = g Zm” — exp (– rmn~ij)

ki,~kj,”
(7)

*=1

where Zmn is the mode pair impedance term given by

bk2–kY2 1
Z.” = jq –

a k(2 – dn) ~.”

The Coupling Network for the nth Spatial Harmonic: The

impedance matrix elements given in (7) can be used to. 0, elsewhere.
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obtain the elements of the gap multiport network for each

n. As expected, the self-impedance terms Zii represent the

driving point impedances at gaps i in the absence of all

other posts. Theexpressions forthese impedances therefore

do not contain any terms in L (Lii = O). The expression

for the mutual terms Zij (i # j), however, takes into account

the z separation of the posts and contains the exp ( – r~nLij)

term in addition to the post and gap coupling factors of the

two posts.

For a coplanar post pair where Lii = O, the mutual

impedance term can represent strong coupling between the

two-gap ports. For nonzero Lij values the propagating

mode terms will be dominant, corresponding to r~,.,Lij =

~flm’n,Lij, while the evanescent mode terms will be attenuated

by the factor exp (– TmnLij). This factor tends to zero as

Lij increases with the consequent elimination of the coupling

due to these modes.

The terms of the impedance matrix elements Zij~ for the

rzth spatial harmonic can be used to represent the coupling

to the various (m,n) mode pair impedance ports from

m = l–m through the post and gap coupling factors and

the exponential distance factors. The matrix elements them-

selves can be used to construct the coupling network

between the N gap ports for the nth spatial harmonic.

- The Complete Network

Equation (7) defines the elements to form the coupling

networks between the gap ports for all n = O–m. The net-

work for such n establishes the relationship between the gap

voltages and the nth spatial harmonic components of

current. The total current at a gap port is the sum of all

individual currents for n = O–cc. The complete network is

thus the parallel combination of all the individual networks.

In effect, the complete network is a multiport network

consisting of the N gap ports and the infinite number of

(m,n) mode pair impedance ports. The accessible ports are

the gap ports and the propagating mode pair ports at the

waveguide arms.

THE GENERAL SINGLE-POST MUL~IGAP STRUCTURE

In this case it is more appropriate for a general gap i and

series connection of the antennas to consider a matrix

representation in the form of short-circuit admittance

rather than open-circuit impedance. In terms of the reaction

concept, the elements of this admittance matrix can be

expressed as circuit reactions between the unit voltage
sources at the gaps. The electromagnetic field formulation

of this problem will then be in terms of magnetic current

source excitations (equivalent to a voltage source in circuit

theory) at the gap locations and the dyadic Green’s function

corresponding to the magnetic current source.

However, the admittance expressions for the network can

be obtained without resort to this approach. The network

equations of a linear N-port can be written in terms of

short-circuit admittance as

Ii = ~ yjvj, i=lto N
j=l

where V,l’ are the excitations at the gap ports. The self-

admittance term Yii for port i is the ratio of current to

voltage at port i with all other ports short circuited, while

the transfer admittance Yij is the ratio of short-circuit
current in port i to the voltage at port j with all ports (#j)

short circuited. Also, the transfer impedance Zij’ is defined

as the ratio of voltage at port i to the current at port j when

short circuited. Zji’ is defined similarly.

Thus ~j = l/Zji’ and Yji = l/Zij’. When these defini-

tions are applied to the post configuration, the self-admit-

tance Yii of port i reduces to the admittance at gap i when

the post contains only that gap. This is equivalent to

Eisenhart and Khan’s [3] expression for the single-post

one-gap case.

The transfer admittance Yij can be expressed in terms of

the transtkr impedance Zj/ which for the post structure

can, in turn, be expressed in terms of the reaction (i,j).

Thus

(8)

where E is the electric field at the post due to the trial

current J* in the antenna. The reciprocity relation gives

Yij = Yji.

The Admittance Expressions: Using a similar analysis to

that of the multiple-post structure together with (8), the

admittance can be written as

[ 1
kpm2 -1

yjn= f Zmn- . (9)
Lm=l Kign/CjgnJ

In this case there is only one post, so that there is a single

value kpm of the post coupling factor.

Network- Representation for the nth Spatial Harmonic:

The admittance matrix elements given by (9) can be used

to construct the coupling network between the gap ports

for each m The elements of such a network represent

coupling tlo all the waveguide mode pair impedance ports

from m = 1 to m for a fixed value of n. The coupling is

dependent on the post coupling factor and the gap coupling

factors. The matrix elements can be used to construct the

coupling network between the gap ports for the nth spatial

harmonic.

The complete network is composed of all the networks

for n = O--co connected in parallel. The accessible ports

are the N gap ports and the propagating mode pair ports

at the waveguide arms.

CONCLUSIONS

The reaction concept has been used to obtain network

representation of two general waveguide post structures,

one consisting of N posts with one gap in each and the

other a single post with N gaps. The network representation

is valid throughout the frequency range where multimode

propagation in the waveguide may occur, and can be

applied to the cases where the immittances at the gap

terminals au-e of interest. Examples are multiply excited or

tunable solid-state sources. The generality of the concept

could enable the method to be used as an alternative

approach to the analysis of other structures.
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Analysis of Waveguide Post Configurations:
Part 11-–Dual-Gap Cases

J. S. JCNHI AND J.

Abstract—The analysis given in Part I [1] is applied to two particular
structures of general interest. The first is the two-post case, each post

having one gap, and the second is the single-post with two gaps. The

@edance or admittance matrix elements are used to constrnct the gap
port networks which are then used to obtain the waveguide obstacle
representations. These latter representations are used to obtain experi-

mental confirmation of the analysis,

INTRODUCTION

T HE general two-post and single-post two-gap struc-

tures in infinite rectangular waveguide are of special

significance in the design of microwave solid-state sources.

The gap immittance matrices derived in [1] are applied

here to these specific cases. First, the nature of the coupling

network between the two-gap ports is discussed, and these

coupling networks are then used to derive the impedance

presented by the post structure to the dominant HIO mode

in the guide. Results of experimental work carried out on

some general post arrangements are also includecl in support

of the theory. The relevant matrix expressions derived in [1]

are given here for convenient reference with alll the quan-

tities defined.

For the structure of Fig. l(a),

()k. k..zijn . f Zmn J#!fw ~XP ( – rmn~,ij) (1)
~=1 [gnJgn
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and for the structure of Fig. l(b),

~jn =

where

Z ‘.. (-) “1
In=l

b (kz – kY2) 1
Z~~ = jq -

a (2 – an)k ~“

(2)

sin i3i~ sin $i~
k.cpm= sin kxsi — kign = COS kyhi _

eim @in

Oim = F 4,” = “V# Wi z 1.8di

kx = En ky=~
k=?

a A

r~~ = (k72 + kY2 – k2)112

an = 1, forn=O

= o, for n # O, i,j = 1,2.

THE TWO-POST STRUCTURE

The elements of the impedance matrix for an nth spatial

harmonic mode given by (1) can be used to construct the

coupling network between the two-gap ports. This network

is preferred in T form since impedance elements are con-

sidered. All the various mode pair impedance ports for

m = l–cc for the given value of n are coupled to the two-

gap ports through the post and gap coupling factors and

the exponential distance factors,


