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Analysis of Waveguide Post Configurations:
Part 1—Gap Immittance Matrices

J. 8. JOSHI anp J. A. F. CORNICK

Abstract—The reaction concept in electromagnetics is used to analyze
two useful kinds of post-mounting structure in rectangular waveguide.
The first is the general multiple-post arrangement with a gap in each post,
the second being a single post with multiple gaps. The analysis derives
equations for calculating the elements of the gap immittance matrices for
these two structures.

INTRODUCTION

ECTANGULAR waveguide post-mounting structures
have wide practical applications and are commonly
used in transferred-electron device and IMPATT oscillators,
often with an associated varactor tuning diode. In such
arrangements it is usual to post mount the device in the
guide, providing power or biasing via a suitable choke to
each post. Many other uses can be visualized such as
multiple source excitation, p-i-n” diode attenuators, and
passive filter elements.

As a consequence of the practical applications of such
structures, a number of characterizations have been pre-
sented. Those considered so far have contained some limita-
tions on the generality of the structure or in the description
of the equivalent network. In-line configurations, where
two posts are sited along the central z axis of the guide,
have been analyzed by some authors [1], [2] to explain the
performance of Gunn oscillators. Templin and Guashor [ 1]
used a modified Eisenhart and Khan [3] analysis for a
single-post structure, while Dean and Howes [2] used
Marcuvitz [4] results for the reactance of a post with the
gap located at the extremity. The post reactances were
calculated in isolation and were coupled by the dominant
TE,, mode using the waveguide length impeda‘,nce trans-
lation. Such techniques do not include the effect of evanes-
cent mode coupling between the two posts. This omission
may be justified when the posts are widely separated, but
since small separations may be very desirable in practice,
the method will be least useful in just these cases.

The other special arrangement which has been considered
is the coplanar post structure in which two posts are located
in one plane normal to the direction of propagation. Even
in this case the structure considered has been of a sym-
metrical nature with respect to both the post and gap
positions [5]. Chang and Khan [6] analyzed the case of
coplanar location of two unequal flat strips. The usefulness
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of the analysis is restricted as finite gaps in the strips are
not considered.

It is thus seen that all analyses to date have suffered from
a loss of generality in the structure. Here an attempt is made
to characterize the completely general multipost mounting
arrangement in the form of a gap impedance matrix for
this structure.

The alternative mounting arrangement, although not as
practical, in which both devices are mounted in a single post
has previously [7] been considered for the case of sym-
metrically placed gaps, while Eisenhart [8] has given an
analysis and equivalent circuit of the two-gap single-post
waveguide mount. This alternative arrangement is also
considered here with the generality of multiple gaps in the
post and in this case a gap admittance matrix derived.

Fig. 1 shows the location and parameters of a general
post i. In the multipost case the post and gap variables are
s;, diy g3, by, and L. In the single-post multigap case the
variables are g; and A, since s, d, L will be fixed for the single
post.

THE ReactioN CONCEPT

The reciprocity theorem in electromagnetic systems under

. certain well-defined conditions equates the response at one

source due to a second source to the response at the second
source due to the first. Considering two sources (J,,M,)
and (J,,M,) in a linear and isotropic medium enclosed in a
volume V, the general statement of reciprocity becomes

” (Ea-Jb—Ha'M,,)dV=” (E,»J, — H,- M) dV.
M

The volume integrals appearing on both sides of (1) have
been given the name reaction [9] and are measures of the
coupling between the two sources. Thus the reaction of
field @ on source b is given by the scalar

@ = [[[€ 0 -m-myar. @
The reciprocity relationship can then be written

{a,b) = <{b,a).

The self-reaction {a,a) is the reaction of field a on source a.

Applications to Circuits

Ideal sources in circuit theory are independent of the
load, and their circuit reactions can be written [10] as

- V;beb’

where b denotes current source
Caby = {70
bta »

- where b denotes voltage source. (3)
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Fig. 1.

Thus for the unit current source 7, = 1, {a,b)> is a measure
of Vb, the voltage at b due to source a. Similarly, for unit
voltage source V, = 1, {(a,b) is a measure of I’ which is
the current at » due to source a.

The equations for a linear N-port in terms of open-circuit
impedances Z;; are

=1toN

N
_; ij p

where V,I are the excitations at the ports and the N-port is
completely characterized by the impedance matrix [Z;;].

The self-impedance term Z;; for port i is the ratio of the
voltage and current at port i with all other ports open
circuited. The mutual impedance term Z;; (i # j) is the
ratio of the voltage at port i to current at port j with all
ports (# j) open circuited.

The general impedance element for the current source
excitation is

Z..

=Yy
ij I
where V;; is the open-circuit voltage at port i and I; is the
current at port j with all ports (# j) open. Using (3),
i)
Zi' = - . 4
= - @
The reciprocity theorem implies that Z;; = Z;;. The ele-
ments of the impedance matrix [Z;;] are thus the various
reactions between the (i,j) pairs of current sources at the
network ports.

Applications to Antennas

For a perfectly conducting antenna excited by a current
source I, the current distribution in the antenna is such that
the tangential component of the total electric field vanishes
on the surface of the antenna. If a trial current density
distribution J,! is assumed in the antenna, the input im-
pedance will be given by (2) and (4) [10]

Z.=7.= - 82 -5 E

Irds. (5
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Post i location and parameters in rectangular infinite guide.

For the case of two antennas 4,b with currents I, and I,
respectively, the mutual impedance is given by (2) and (4)

$aby _ 1
L,  LhJs

where E, is the field at b due to current density J,' in
antenna a and J,' is the trial current density in antenna b.
It can be shown that the impedances are stationary with
respect to variations in the trial current density distribu-
tions [9], [10].

Zpw = — E,- J'dS ©)

MULTIPOST STRUCTURE IN RECTANGULAR WAVEGUIDE

Following Fisenhart and Khan [3] the post i is replaced
by an equivalent strip of width 1.8 times the diameter.
Again the assumptions of uniform current density distribu-
tion across the strip and uniform electric field distribution
in the gap are made [3].

The notation in the text is identical to that used by
Eisenhart and Khan [3]. Their method is used to evaluate
the terminal current of the antenna (gap port). The reaction
concept is then used to derive the general expression for
the impedance matrix elements.

The Dyadic Green’s Function: Since the posts are y
directed, it is only necessary to consider y-directed current
distributions, and the form of this function for an infinite
rectangular waveguide becomes

G@r/r') = yy ,.20 "21

L2 = )k — k) exp (=Thlz — 2'))
abk’l’,,,

. . ,
- sin k,x cos k,y sin k. x’ cos k,y

'

where
k, =" k, = nmo_2n
- a b A
mn = (kx2 + ky2 - k2)1/2
o, =1, forn =20

0, forn # 0.
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Trial Current Density Distribution: The problem of
choosing a suitable trial current density can be made
simpler by writing the current density in the form of a
general orthogonal set of circular functions corresponding
to Green’s function; thus for post i,

THr) = yJoudxuf(y)d(z — L)

5,54 (1ot

f=1
d 1
uly) = Z ( ) (A ? cos %’X + B,/ sin :y)

The trial current density distribution selection now reduces
to finding values of the normalized expansion coefficients.
The y-distribution coefficients can be left in general form,
but if the posts are replaced by equivalent flat strips of
widths w; = 1.8d,, then the assumption of uniform current
density across the strip width gives specific values to
coefficients 4,/* and B;/* as

where

ufx) =

+ B/~ smf x)
a

A = w, cosfm sin H,f
' a 0
B = w, sin {75 510 Oy
t
' a 0
where
9, =™
?,
o 2a

This assumption places an upper limit on the ratio of post
diameter to waveguide broad dimension consistent with
acceptable errors. It is not likely to be a problem in practical
cases due to the conveniently available sizes of packages
for semiconductor devices. It is expected that for strip
widths w; < a/4 the assumption is justified.

Electric Field Distribution: The electric field is given by

E(r) = —jou f G(rlr'y - J(r")y dV’

v

which results in

JﬂJo, y 2= o)k — k5

r) =
() bkn0m=1 I

 Ai”B;y, " sin kyx cos kyy exp (—T,,lz — Ly)).

Gap Electric Field: The assumption is made that a
constant spatial electric field exists in each gap. In most
practical cases the gap sizes in relation to the waveguide
height are small, and this will not lead to excessive error.
For gap size g; < b/4, it is expected that the assumption
will be justified. Defining

Ey = =y o095 - L)
where l
vix) =1, fors,--lv—isx5;si+ﬂ;z=L,-
2 2
=0, elsewhere.

n
The y distribution is

v(y) =

v (2—-6, pny
S, ¢
p;o ( b ) S b

The normalized expansion coefficients S, are given by

Sip = g; cos prh; sin ¢,
¢ip

where
g
2b
The input currents at the antenna terminals can be ob-

tained by calculating the incident power on each of the gaps,
respectively, for each n. For gapiatz = L,

2 ha 5" nﬂhi Sin ¢in
J;Egi(r)'Ji(r)dS= ~I/icl()i14,~ny( b )Cos—b—-Tin w;
nnh; sin ¢,

or
Iin = (2 — 6") AinyJOi i
b ¢in

The Impedance Matrix Elements: Having determined the
currents at the antenna terminals (gap ports), the self-
impedance of gap port i can be calculated for each » using
(5). Thus

d’ip =

a b
Ziw = — ~1—2 f f E(r)- J'(r) dx dy, atz = L,
I Jizo V=0

b (kz — kyz) - (kipm/kign)‘2

M kKE =) = T,
where
Kipm = sin k,s; Sin. G
kign = cos kh; %

in

The mutual impedance term for each n is given by [see (6)]

a b
Zjin = — f f E(r)-Ji(r)dx dy, atz =L,
intjn Yx=0 vYy=0
— ],1 é (kz — kyZ) v kipmkjpm eXp ("_ranij)
a k(2 - 5”) m=1 klg"kj!l" l—‘mn

where L;; is the distance between the i,j post planes mea-
sured along the z axis. Writing the expression for Z;; at
z = L; confirms that Z;;, = Z,,,. The general expression

for the elements of the N-port impedance matrix for the
nth spatial harmonic can be written as

Zyy = 3 Zan (Sosien) exp -1y
m= ktgnklyn
where Z,,, is the mode pair impedance term given by
= b k* — k2 1
" ak@ - 6,) T,

The Coupling Network for the nth Spatial Harmonic: The
impedance matrix elements given in (7) can be used to
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obtain the elements of the gap multiport network for each
n. As expected, the self-impedance terms Z;; represent the
driving point impedances at gaps i in the absence of all
other posts. The expressions for these impedances therefore
do not contain any terms in L (L;; = 0). The expression
for the mutual terms Z;; (i # j), however, takes into account
the z separation of the posts and contains the exp (—I,,,L;;)
term in addition to the post and gap coupling factors of the
two posts,

For a coplanar post pair where L;; = 0, the mutual
impedance term can represent strong coupling between the
two-gap ports. For nonzero L;; values the propagating
mode terms will be dominant, corresponding to I,/ L;; =
JBmwLij, while the evanescent mode terms will be attenuated
by the factor exp (—TI,,L;;). This factor tends to zero as
L;;increases with the consequent elimination of the coupling
due to these modes.

The terms of the impedance matrix elements Z;, for the
nth spatial harmonic can be used to represent the coupling
to the various (m,n) mode pair impedance ports from
m = l-oo through the post and gap coupling factors and
the exponential distance factors. The matrix elements them-
selves can be used to construct the coupling network
between the N gap ports for the nth spatial harmonic.

~The Complete Network

Equation (7) defines the elements to form the coupling
networks between the gap ports for all n = 0—c0. The net-
work for such » establishes the relationship between the gap
voltages and the nth spatial harmonic components of
current. The total current at a gap port is the sum of all
individual currents for n = 0-co. The complete network is
thus the parallel combination of all the individual networks.

In effect, the complete network is a multiport network
consisting of the N gap ports and the infinite number of
(m,n) mode pair impedance ports. The accessible ports are
the gap ports and the propagating mode pair ports at the
waveguide arms.

THE GENERAL SINGLE-POST MULTIGAP STRUCTURE

In this case it is more appropriate for a general gap i and
series connection of the antennas to consider a matrix
representation in the form of short-circuit admittance
rather than open-circuit impedance. In terms of the reaction
concept, the elements of this admittance matrix can be
expressed as circuit reactions between the unit voltage
sources at the gaps. The electromagnetic field formulation
of this problem will then be in terms of magnetic current
source excitations (equivalent to a voltage source in circuit
theory) at the gap locations and the dyadic Green’s function
corresponding to the magnetic current source.

However, the admittance expressions for the network can
be obtained without resort to this approach. The network
equations of a linear N-port can be written in terms of
short-circuit admittance as

N
L=Y YV, i=IltN
Jj=1
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where V,I are the excitations at the gap ports. The self-
admittance term Y;; for port i is the ratio of current to
voltage at port i with all other ports short circuited, while
the transfer admittance Y;; is the ratio of short-circuit
current in port i to the voltage at port j with all ports (5 j)
short circuited. Also, the transfer impedance Z;;' is defined
as the ratio of voltage at port i to the current at port j when
short circuited. Z;;" is defined similarly.

Thus Y;; = 1/Z;/ and Y;; = 1/Z;;/. When these defini-
tions are applied to the post configuration, the self-admit-
tance Y;; of port i reduces to the admittance at gap i when
the post contains only that gap. This is equivalent to
Eisenhart and Khan’s [3] expression for the single-post
one-gap case.

The transfer admittance Y;; can be expressed in terms of
the transfer impedance Z;; which for the post structure
can, in turn, be expressed in terms of the reaction {i,j).
Thus

Y = — .—1 = 1
Gyl [E-J'dS
where E is the electric field at the post due to the trial
current J* in the antenna. The reciprocity relation gives
Yy = Y

The Admittance Expressions: Using a similar analysis to
that of the multiple-post structure together with (8), the
admittance can be written as

@© k 2 -1
Yijn=|:zzmn B ] .
m=1 kignk ign
In this case there is only one post, so that there is a single
value k,,, of the post coupling factor.

Network Representation for the nth Spatial Harmonic:
The admittance matrix elements given by (9) can be used
to construct the coupling network between the gap ports
for each n. The elements of such a network represent
coupling to all the waveguide mode pair impedance ports
from m = 1 to oo for a fixed value of »n, The coupling is
dependent on the post coupling factor and the gap coupling
factors. The matrix elements can be used to construct the
coupling network between the gap ports for the nth spatial
harmonic.

The complete network is composed of all the networks
for n = O0-00 connected in parallel. The accessible ports
are the N gap ports and the propagating mode pair ports
at the waveguide arms.

®

®

CONCLUSIONS

The reaction concept has been used to obtain network
representation of two general waveguide post structures,
one consisting of N posts with one gap in each and the
other a single post with N gaps. The network representation
is valid throughout the frequency range where multimode
propagation in the waveguide may occur, and can be
applied to the cases where the immittances at the gap
terminals are of interest. Examples are multiply excited or
tunable solid-state sources. The generality of the concept
could enable the method to be used as an alternative
approach to the analysis of other structures.
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Analysis of Waveguide Post Configurations:

Abstract—The analysis given in Part I [1] is applied to two particular
structures of general interest. The first is the two-post case, each post
having one gap, and the second is the single-post with two gaps. The
impedance or admittance matrix elements are used to construct the gap
port networks which are then used to obtain the waveguide obstacle
representations. These latter representations are used to obtain experi-
mental confirmation of the analysis.

INTRODUCTION

HE general two-post and single-post two-gap struc-

tures in infinite rectangular waveguide are of special
significance in the design of microwave solid-state sources.
The gap immittance matrices derived in [1] are applied
here to these specific cases. First, the nature of the coupling
network between the two-gap ports is discussed, and these
coupling networks are then used to derive the impedance
presented by the post structure to the dominant H;, mode
in the guide. Results of experimental work carried out on
some general post arrangements are also included in support
of the theory. The relevant matrix expressions derived in [1]
are given here for convenient reference with all the quan-

[10] R. F. Harrington, Time Harmonic Electromagnetic Fields. New
York: McGraw-Hill, 1961.
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and for the structure of Fig. 1(b),
[ £ 2 (L) @
Yi'n = Zmn 2 )]
] m=1 kignkjgn
where
2 _ 12
Zpy =i 220D
a (2 - 5n)k rmn
kim = sin k,s; SN O, kign = cos kh; %
Oim in
mnw. nnyg;
0i = 4 n = — Wi - 1.8di
" 2a ¢ 2b
=T p_m L2
* a Y oob A
r,, = (kx2 + ky2 - k2)1/2
J, =1, forn =20
=0, forn # 0, ij = 1,2.

tities defined.
For the structure of Fig. 1(a),

X ki mk m
Zin = 3 Zun (S0m) exp (-1 ()

kiyn Jgn
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THE TwWO-POST STRUCTURE

The elements of the impedance matrix for an nth spatial
harmonic mode given by (1) can be used to construct the
coupling network between the two-gap ports. This network
is preferred in T form since impedance elements are con-
sidered. All the various mode pair impedance ports for
m = 1-oo for the given value of n are coupled to the two-
gap ports through the post and gap coupling factors and
the exponential distance factors.



